
Open-Source Software Support for the OpenMP Runtime
API for Profiling∗

Oscar Hernandez and Barbara Chapman
Dept. of Computer Science, University of Houston

{oscar,chapman}@cs.uh.edu
Van Bui∗

Mathematics and Computer Science Division, Argonne National Laboratory
{vbui}@mcs.anl.gov

Richard Kufrin
NCSA, University of Illinois at Urbana-Champaign

{rkufrin}@ncsa.uiuc.edu

ABSTRACT
OpenMP is a de facto standard API for shared-memory pro-
gramming with widespread vendor support and a large user
base. The OpenMP Architecture Review Board has sanc-
tioned an interface specification known as the “OpenMP
Runtime API for Profiling” to enable tools to collect perfor-
mance data for OpenMP programs. This paper describes the
interface and our experiences implementing it in OpenUH,
an open source OpenMP compiler.

1. INTRODUCTION
OpenMP [1] is an API for shared-memory parallel program-
ming with directives that are compiled to explicit multi-
threaded code. The code produced by the compiler invokes
routines in a custom OpenMP runtime library to manage
and synchronize threads and assign work to them. The lack
of standards in the runtime layer has hampered the devel-
opment of third-party tools to support OpenMP application
development. The OpenMP Runtime API (ORA) proposed
in [4] is an interface specification for profiling and tracing
tools for the OpenMP programming model. Prepared by
the tools committee of the OpenMP Architecture Review
Board, it is designed to permit a tool, known generically
as the collector, to gather information about a program’s

∗This work was supported by the National Science Founda-
tion under contract CCF-0702775 and by the U.S. Depart-
ment of Energy under contracts DE-FC03-01ER25502 and
DE-AC02-06CH11357. Van Bui is also affiliated with the
Computer Science Department at the University of Hous-
ton. The authors thank Boyana Norris and Lois Curfman
McInnes of Argonne National Laboratory for providing the
system used in part of the experimental portion of this pa-
per.

execution from the runtime system in such a manner that
neither entity need know any details of the other. Thus it is
designed, in particular, to ensure that tools’ developers do
not need to study the workings of different OpenMP imple-
mentations.

ORA [4] is a query and event notification-based interface
that relies on bidirectional communications between the
OpenMP runtime library and performance tools. ORA is
independent of the compiler: it resides inside the OpenMP
runtime library. It does not require modification of the ap-
plication’s source code because no instrumentation on the
user’s code is required. Consequently, data collection will
interfere much less with compiler analysis and optimizations
than corresponding methods, and a more accurate picture
of the performance of the application is possible. The design
also allows for the collector and OpenMP runtime to evolve
independently.

Reference implementations of ORA are sparse because it re-
quires compiler and OpenMP runtime library support. The
only known closed-source prototype implementation of ORA
is provided by the Sun Studio Performance Tools [5]. To the
best of our knowledge, the work reported here is the first
open-source implementation of ORA. We expect ORA to be
adopted by the community as more compiler vendors start
to support it.

This paper is organized as follows. In the next section, we
discuss related work. We then briefly describe how OpenMP
is implemented, in order to show the role of the runtime
library. Next, we discuss ORA and our implementation of
it. Finally, we indicate the overheads we have measured
while using it, and we discuss future work.

2. RELATED WORK
POMP [8] enables performance tools to detect OpenMP
events and was earlier proposed as a standard performance
profiling and tracing interface. POMP is independent of
the compiler and OpenMP runtime library. It consists of a
portable set of instrumentation calls that are designed to be
inserted into an application’s source code. The instrumen-

tation points measure the time spent inside OpenMP con-
structs and calls to its user-level library routines. Current
tools that support POMP mostly require source code in-
strumentation (with source code instrumentation tools such
as Opari), which can interfere significantly with compiler
optimizations because the instrumentation calls are inter-
woven with the application code from the beginning. When
used with object code instrumentation, its functionality is
restricted to a subset of events. Tools that use POMP are
not aware of how OpenMP constructs are translated by the
compiler to a specific runtime library.

Other languages have interfaces similar in spirit to ORA.
GASP [12] is a profiling interface for global address space
programming models such as UPC [2], Co-array Fortran [9],
Titanium [14], and SHMEM. GASP is an event-based inter-
face that specifies how the runtime environment communi-
cates with performance tools. The compiler/runtime notifies
the tool of a particular action/event through function call-
backs to the tool developer’s code. GASP does not require
any source-level instrumentation that would interfere with
compiler analysis and optimizations. A potential drawback
is the communication overheads from the function callbacks.
GASP is currently implemented in the runtime library of
Berkeley UPC.

The MPI standard has a performance-monitoring interface
called PMPI [11] that operates as a software layer between
the application source code and the MPI native routines.
This interface does not require any source code modifica-
tions. PMPI forms a set of wrapper routines for each MPI
call such that performance instrumentation calls can occur
before and/or after calls to the MPI native routines. From
the user’s perspective, the MPI interface has not changed at
all. The difference is in the implementation of the MPI rou-
tine itself, where timer routines are added to collect/store
performance data before and after the call to the native MPI
event. PMPI has facilitated the development of several per-
formance analysis tools for MPI applications [13, 10, 3].

3. ROLE OF THE RUNTIME IN AN OPENMP
IMPLEMENTATION

Many compilers can translate OpenMP programs into ex-
plicit multithreaded code. The typical strategy for doing so
involves converting individual OpenMP directives into one
or more calls to a custom OpenMP runtime library. The
associated program code will also be modified as needed.
Clauses that are specified by the application developer along
with the directive will influence the manner in which the di-
rective is translated. The runtime library will contain rou-
tines to create and manage threads, to assign work to them,
and to synchronize their activities. It will also have routines
to implement OpenMP’s user-level library functions.

For example, the program in Figure 1 shows a simple
OpenMP program where the application developer has in-
serted a directive to specify that a team of threads should
perform the reduction in the loop associated with the
pragma. A typical strategy for implementing this would
package the work of the parallel region into a new proce-
dure, a process known as outlining. Many compilers nest
the newly created procedure within the procedure contain-
ing the parallel region. Once the threads have been started

int main(...) {
int sum =0;
...
#pragma omp parallel for reduction(+:sum)
for (i = 0; i < N; i++)

sum = sum + 1;
}
...
return 1;
}

Figure 1: Sample OpenMP code

up via a call to the corresponding ompc fork() routine in
the runtime library each of them will begin to execute this
procedure. Here (see Fig. 2), the compiler has created a
new procedure with the name ompdo main 1. The threads
are started, and the routine is passed to them via a call to

ompc fork. In the routine itself, the OpenMP runtime li-
brary will pass the thread id of the thread executing the par-
allel procedure. Then it will invoke another routine in the
runtime library (ompc static init4) to compute its own set
of loop iterations based on the original loop bounds of the
parallel loop. It is now ready to perform its portion of the
work, in this case a reduction operation. The compiler has
modified the loop header accordingly. The threads then en-
ter a critical region bounded by the OpenMP runtime calls

ompc reduction and ompc end reduction to update the
shared reduction variable sum with the local results mplo-
cal sum. They synchronize at a barrier before the region
terminates.

We can use these OpenMP runtime calls to implicitly cap-
ture OpenMP performance events and states, such as when a
thread performs a fork/join operation and goes from a serial
state to another state (i.e., parallel overhead state or paral-
lel work state), enters/exits a barrier, or starts to compute a
reduction. All these states and events can be captured just
by adapting the OpenMP runtime calls, without modifying
the OpenMP translation of the original procedure in any
way. The ORA interface (which we will describe in the next
section) provides an API to query the OpenMP runtime for
thread states and event notifications via callback functions.

4. AN IMPLEMENTATION OF THE OPENMP
PROFILING API

The ORA interface [4] consists of a single routine that takes
the form: int omp collector api (void *arg). The arg pa-
rameter is a pointer to a byte array that can be used by a
collector to pass one or more requests for information from
the runtime. The collector requests notification of a specific
event by passing the name of the event to monitor as well
as a callback routine to be invoked by the OpenMP runtime
each time the event occurs.

Since the OpenMP runtime and the collector tools remain
fully independent of one another, it is essential that a mecha-
nism be provided that allows each of them to interact while
not compromising their ability to operate separately and
individually. This is accomplished by having the OpenMP
runtime implement a single API function omp collector api
and export its symbol in the OpenMP runtime library. The
collector may then query the dynamic linker to determine

int main(..) {
int sum=0;
..
__ompc_fork(0, &__ompdo_main1, stack_pointer_of_main1);

/* parallel region function is nested within parent procedure */

void __ompdo_main1(int __ompv_gtid, /* thread id */
void *__ompv_slink_a) {

int __mplocal_i, __mplocal_sum=0, __mp_lock,
int __my_lower=0, __my_upper=N-1, my_stride=1;

__ompc_static_init_4(__ompv_gtid, 2, &my_lower,
&my_upper, &my_stride, OMP_STATIC_EVEN, 1);

for(__mplocal_i = __my_lower; __mplocal_i <= __my_upper;
__mplocal_i = __mplocal_i + 1) {

__mplocal_sum = __mplocal_sum + 1;
}

__ompc_reduction(__omp_gtid, & __mplock);
sum = sum + __mplocal_sum;
__ompc_end_reduction(__omp_gtid, & __mplock);

__ompc_ibarrier();
return;

}
return 1;

} /* end of main */

Figure 2: Compiler translation of the sample
OpenMP code of Fig. 1 into explicitly multi-
threaded code.

Figure 3: Example of a sequence of requests made
by collector to OpenMP runtime.

whether the symbol is present. If it is, then it may initi-
ate communications with the runtime and begin to make
queries of and send requests to the OpenMP runtime using
the interface. The OpenMP runtime will then start keep-
ing track of thread states and triggering event notifications.
Figure 3 depicts a possible sequence of interactions between
the collector and OpenMP runtime.

The thread states that the OpenMP runtime should distin-
guish include when a thread is doing useful work or exe-
cuting OpenMP overheads (preparing to fork, or computing
scheduling strategies for threads). Also, it should distin-
guish states when a thread is idle or executing an explicit
or implicit barrier, performing a reduction, waiting on locks
or critical and ordered regions, or performing an atomic up-
date. When the collector makes a request for notification
of a specified event(s), the OpenMP runtime will activate
monitoring for this event inside its environment. The collec-
tor may also make requests to pause, resume, or stop event
generation, each of which must be supported in the run-
time. The collector interface specification requires that the
OpenMP runtime provide support for notification of fork
and join events and specifies support for the other events
as optional to support tracing. These optional events in-
clude begin/end of explicit and implicit barriers, begin/end
of waits for locks, critical regions, ordered sections, atomic
operations, begin/end of master, single regions, and start
and stop of idle slave threads (in serial regions between par-
allel regions).

ORA relies on retrieving the program callstack and different
IDs (the parallel region id and its parent, etc...) to provide
the mapping between a given event/state and the source
code. This is usually done at the join event to exclude small
parallel regions where the collector tool did not gather any
information. Reconstructing the callstack to provide a user
view of the program is done offline after the application fin-
ishes. Issues to consider regarding ORA’s approach to per-
formance measurement include the overhead associated with
activating and deactivating event generation and overheads
from invoking the callback routines. Overheads can be min-
imized by being selective with respect to the events to turn
on or off and to the points where the callstack is retrieved
(we want to avoid doing so for insignificant events and small
parallel regions).

4.1 OpenMP Collector API Support in the Run-
time Library

We implemented the OpenMP Collector API in the OpenUH
compiler. OpenUH [7], a branch of the Open64 compiler
suite, is an optimizing and portable open-source OpenMP
compiler for C/C++ and Fortran 95 programs. The suite
is based on SGI’s Pro64 compiler, which has been provided
to the community as open source. It targets the Itanium,
Opteron, and x86 platforms, for which object code is pro-
duced, and may be used as a source-to-source compiler for
other architectures using the intermediate representation (IR)-
to-source tools. At the time of writing, OpenMP 2.5 is sup-
ported along with a partial implementation of OpenMP 3.0;
the OpenMP runtime library is open source.

To implement the OpenMP Collector API, we had to modify
the OpenMP runtime library and the OpenMP translation

in the OpenUH compiler. Several extensions are required
in the OpenMP runtime in order to support the OpenMP
Collector API specification. The OpenMP runtime needs to
(1) be able to initiate/pause/resume/stop event generation,
(2) respond to queries for the ID of the current/parent par-
allel region and wait ids, and (3) respond to queries for the
current state of the calling thread.

4.2 Initialization of the OpenMP Collector API
When a collector tool requests the initialization of the OpenMP
Collector API, it sends a message request of type OMP REQ -
START to inform the OpenMP runtime that it should start
keeping track of thread states, initialize the necessary stor-
age classes (queues) to process requests, initialize all ta-
bles that contain callback information/notifications (func-
tion pointers), and start keeping track of different IDs (e.g.,
parallel region IDs, parent parallel region IDs). A thread-
safe boolean global variable is used to indicate whether the
Collector API has been initialized. Any thread can modify
this variable to true after the initialized request or to false
when a thread requests a stop via OMP REQ STOP. If two
requests for initialization are made without a stop request
in between, an “out of sync” error code is returned. After
ORA has been initialized, future requests to the API are
pushed onto a queue associated with a thread. In this man-
ner, we were able to avoid the contention otherwise incurred
if a single global queue processed requests.

4.3 Implementing Events and States
When a thread sends a request to register a given event, the
event type OMP COLLECTORAPI REQUEST and a call-
back function pointer is passed as an argument to the API
call in the runtime. This function pointer is stored in a table
that contains the event callbacks shared by all the threads.
Each table entry has a lock associated with it to avoid data
races when multiple threads try to register the same event
with different callbacks. This implementation assumes that
all threads will share the same set of callback functions for
the registered events. It also assumes that the registration
of events and callbacks will not be frequent and will occur
mostly at program start. Whether these assumptions hold
will depend on the nature of the collector tool and how selec-
tive it is with regard to registering and unregistering events.

The events and states in our runtime are implemented
by inserting the function ompc event((event name) and

ompc set state(state name) at different locations in the
OpenMP runtime. The state values are stored in a field
of the OpenMP thread descriptor, a data structure that
is kept within the runtime to manage OpenMP threads.
Just before an OpenMP thread is created, in our case via
pthread create(), its thread descriptor is set up. The master
thread is the only thread that can run in parallel or serial
mode, and hence it has two thread descriptors. This du-
plicate data structure was needed because it is possible for
a tool to initialize the collector API before the OpenMP
runtime library is initialized.

The ORA white paper [4] indicates that is optional for the
OpenMP runtime library to keep track of thread states even
before or after the Collector API has been initialized. We
decided to always keep track of the states once OpenMP
threads are created, and the OpenMP runtime is initial-

ized. The reason is that we want to avoid the use of condi-
tional statements throughout the OpenMP runtime library
to check whether the OpenMP Collector API is initialized
or is paused, which is not efficient if a program executes
without using the OpenMP collector API. Keeping track of
the thread states is an inexpensive operation that consists
of performing one assignment operation per state to update
the private thread descriptor that is local to a thread.

When a thread encounters a point within the OpenMP
runtime library that corresponds to an event, it will in-
voke the callback function related to it. This situa-
tion occurs if the event has been registered (so there
is a callback function associated with it) and the Col-
lector API has been initialized and is not in paused
mode. When a thread reaches an event point, the func-
tion ompc event((OMP COLLECTORAPI EVENT) e)
will execute and use the event type to access the callback
table. If the event has been registered, the callback table
will contain a function pointer for the corresponding call-
back; it will contain the value NULL for unregistered events.
The ordering of the checks is important to avoid unneces-
sary checking if no callback has been registered for an event
(which is possible if the OpenMP Collector API has not
been initialized). If all conditions are true, then the thread
will execute the callback, and the event type is passed as an
argument to the callback function.

4.3.1 Fork and Join Events and Their States
The serial state THR OVHD STATE is the first state
that we keep track of (even if the OpenMP Collector
API hasn’t been initialized) and is applicable only to
the master thread before and after it executes a non-
nested parallel region. The fork event is implemented
by a call to the function ompc event with the ac-
tual argument of OMP EVENT FORK, just before the
call pthread create() is executed in our implementation.
This occurs when the OpenMP runtime library encoun-
ters the first parallel region and needs to initialize and
create threads and whenever it needs to create more
OpenMP threads. As soon as the threads are created,
they are set to be in the THR IDLE STATE, and the event
OMP EVENT THR BEGIN IDLE triggers a callback asso-
ciated with that event. In situations where the number of
threads executing parallel regions in an OpenMP program
changes dynamically, subsequent fork events will be trig-
gered before the call to pthread create() in order to add more
threads to the existing ones as required. In our OpenMP im-
plementation, all the threads survive (and are sleeping) in
between non-nested parallel regions. Since conceptually in
the user model of OpenMP there is a fork operation at the
begining of each parallel region (even if the OpenMP run-
time does not create new threads), the fork event is triggered
while the master thread updates the slave threads’ thread
descriptors with the newly created outlined OpenMP pro-
cedure (see Fig. 2, just before the slave threads begin to
execute the parallel region. During this process, the master
thread is considered to be in the overhead state. Our com-
piler currently serializes nested parallel regions; therefore,
we do not trigger a fork event for nested parallel regions.
This will change in future releases of the compiler, and a
fork event will be generated whenever we create a nested
parallel region and the corresponding OpenMP threads.

In the case of a join operation, the OMP EVENT JOIN
is triggered, and the state of the master thread is set to
THR OVHD STATE as soon as it leaves the implicit bar-
rier at the end of the parallel region. The fork and join event
callback are invoked by the master thread of any parallel re-
gion.

4.3.2 Barrier Events
The states and events related to barriers are implemented
by setting the thread state variable to THR EBAR STATE
or THR IBAR STATE (for explicit or implicit barriers).
Then, when a thread enters and exits a barrier, the thread
triggers the events OMP EVENT THR BEGIN EBAR and
OMP EVENT THR END EBAR when they exit the bar-
rier. The implementation of these states and events proved
to be straightforward because they were simply inserted
into the OpenMP runtime calls that implement a barrier.
However, initially our runtime was not able to distinguish
whether a barrier was implicit or explicit because it used
the same runtime call for both cases. Indeed, the function-
ality is the same. As a result, we had to change the way
our compiler translated OpenMP barriers so that different
runtime calls were generated according to whether it was
dealing with an implicit or an explicit barrier (see Figure 2,
where it has inserted a ompc ibarrier call). Each thread
keeps track of its own implicit or explicit barrier ID, which
is incremented each time a thread enters a barrier.

4.3.3 Lock Wait Events and State
Our implemention of OpenMP locks is based
on the Pthreads lock implementation. The
events OMP EVENT THR BEGIN LKWT and
OMP EVENT THR END LKWT were implemented
by modifying the implementation of our OpenMP lock
runtime call. The state was implemented by setting the
the state THR LKWT STATE. Since these events and
state are triggered only when a thread is waiting for a
lock, we added the function pthread try lock() to capture
an individual thread’s behavior and check whether the lock
is available. If it is available, then the thread acquires the
lock and continues its execution. If the lock is busy, then
we trigger the wait lock state and corresponding event.
Also, each thread increments a lock wait ID. The same
procedure is applied for nested locks. There are several
places within our OpenMP runtime library where implicit
locks are used; however we trigger this state and the events
only for user-defined locks (i.e., locks specified by the user
in the source code). Since our compiler initially used the
same OpenMP runtime call to implement all locks, we
modified it to provide separate implementations for each
case.

4.3.4 Critical Region Wait States and Events
A similar approach is used to implement the state and
events corresponding to a critical region. Our critical
region runtime call is implemented by the insertion of a
compiler-generated lock that is used to generate a mutually
exclusive region (see Figure 2 for the compiler-generated
locks in the reduction operation, which are generated in
the same way as for critical regions). We implemented the
state and events OMP EVENT THR BEGIN CTWT,
OMP EVENT THR END CTWT, and

THR CTWT STATE within the OpenMP runtime calls for
critical regions and wait states when the threads wait to
acquire this automatically generated lock. A critical region
wait ID is maintained and incremented each time a thread
waits to acquire the lock inside a critical region. Each
thread keeps track of its own wait IDs.

4.3.5 Reduction State
Initially our compiler implemented the reduction operation
(at the end of a parallel do or for) by translating it so that it
relied upon a critical region to perform the thread updates
of the shared reduction value that is the last part of the
operation. We therefore modified the OpenMP translation
to distinguish between a reduction operation and critical re-
gion runtime calls by inserting a special OpenMP runtime
call for reductions (see Figure 2). Whenever a thread en-
ters a reduction operation, it automatically sets its state to
THR REDUC STATE.

4.3.6 Master and Single Begin/End Events
We needed to change the translation of the OpenMP run-
time in order to be able to handle the begin/end master
events. Our modified implementation inserts two runtime
calls (previouly there was only a conditional with a runtime
call) at the begining and end of the translated master con-
struct, respectively. The purpose of these runtime calls is to
capture both the events that occur when the master thread
enters or leaves the master region. A similar approach was
used for single regions. The extra runtime call at the end of
the translation of the single construct ensures that the single
exit event is captured. According to the OpenMP Collector
API white paper, the thread’s state inside a single or master
construct is undefined because these worksharing constructs
allow nesting with other OpenMP constructs. However, as
a default we set the thread state to THR WORK STATE
for those threads executing them.

4.3.7 Atomic Wait Operations
The events and state for atomic waits were not implemented
in our compiler. The reason behind this decision is that
triggering these events and states will inevitably incur large
overheads. Implementing these events also adversely af-
fects the translation of the OpenMP atomic operation. In
OpenUH, atomic operations are translated to intrinsic syn-
chronization operations that are not part of the OpenMP
runtime library. However it might be possible to implement
this event if we implement a wrapper function against a na-
tive implementation or if we use the assembler to modify
this.

4.4 Get State Request for the Collector API
The collector tool can request the state of a thread at
any given point of the program execution. We made sure
that this type of request could be requested at any given
point during the execution of the program. In order to
guarantee that a thread will always have a state associate
with it (even before a thread is created in the case of the
slave threads), this data structure descriptor is initialized to
THR OVDH STATE state to reflect the slave threads are
in the process of being created. This guarantees that any
OpenMP thread will have a state associated with it and will
always return a correct value. Also when a state is requested

for a thread outside of the parallel region, it will return the
THR IDLE STATE state or THR SERIAL STATE. Since
some states have a wait ID associated with them, we set the
corresponding values of these wait IDs as set in the thread
descriptor data structures (the values of the barrier ID, or
lock wait ID, etc). For example, we return the value of a
barrier ID or lock ID after the event type in the mem section
of the OpenMP collector API request.

4.5 Parallel Region IDs and Parent Region
IDs

Since a team of threads will execute a parallel region and
there is a one-to-one mapping, we added an OpenMP region
ID and parent region ID field as a part of the thread team
data structure descriptor. Each time a team of threads ex-
ecutes a parallel region, this current and parallel region ID
is updated. In the case of nested parallelism, we don’t keep
track of these IDs because our compiler currently serializes
them. In future releases of the compiler, we will update the
Current Parallel Region and Parent Regions ID for the team
of threads executing the nested parallel region. In the case of
a non-nested parent parallel region ID, its parent region ID
will always be zero. In the case of a nested parallel region,
it will return the current parallel region ID of the parent
team that spawned the new team of threads. We imple-
mented this collector API request so that it can be executed
asynchronously and so that we can make this request at any
given point during the execution of the program. When a
thread is outside a parallel region, it will return an error
code indicating a request out of sequence and an ID with
the value of zero. This is also the case when a thread goes
into the serial state or idle state.

4.6 Constructing the User-Model Callstack
Profile

PerfSuite is an open-source software package for applica-
tion performance analysis that interfaces to the user through
command-line tools that can be used with unmodified ap-
plications or through a compact API that allows more flex-
ibility in selective monitoring of portions of an application
[6]. With the advent of the ORA, we extended the core
PerfSuite libraries used within the OpenUH runtime to ex-
pose additional contextual information in addition to the
raw performance data collected within parallel regions. The
extensions support reconstruction of the user model call-
stack, which is necessary because performance data is typi-
cally collected and coupled with the implementation model
callstack. These extensions were implemented in an auxil-
iary library called libpsx and provide the following additional
capabilities:

• Call-stack retrieval, using the open source library li-
bunwind.1 New API entry points, callable by the col-
lector, provide instruction pointer values for each stack
frame at the point of inquiry, allowing reconstruction
of the call graph.

• Mapping of instruction pointer values to source code
location, using the Binary File Descriptor (BFD) API
that is contained in the GNU “binutils” package.2

1http://www.nongnu.org/libunwind
2http://www.gnu.org/software/binutils

Combined with the call-stack retrieval extensions, this
allows the collector to assemble information meaning-
ful in the context of the user’s source code.

In addition to the ORA implementation provided by
OpenUH, these extensions to PerfSuite enable tool devel-
opers to design tools that can collect performance data and
map this data back to events that make up the user model
of OpenMP.

5. EXPERIMENTAL RESULTS
We developed a prototype performance measurement tool to
estimate the overheads that can incur from data collection.
The performance tool is based on the extensions made to
PerfSuite’s [6] performance measurement libraries that were
discussed in Section 4.6 and also on the OpenUH compiler’s
implementation of ORA. The tool is a shared object that
is LD PRELOAD’ed to the target’s address space. It in-
cludes an init section that queries the runtime linker for
the presence of the OpenMP API symbol. If the symbol is
present, the tool initiates a start request and registers for
the fork, join, and implicit barrier events. The callback rou-
tine that is invoked each time a registered event occurs at
runtime stores a sample of a hardware-based time counter.
Furthermore, in order to estimate the potential overheads
from callstack retrieval, the tool also records the current
implementation-model callstack for each join event.

5.1 EPCC Benchmark
We evaluated our approach first by measuring the overheads
for the different events/states when ORA is enabled. Specif-
ically, we used the EPCC Microbenchmarks on an Altix Sys-
tem 3700 and used up to 32 processors. For each event we
collect, the framepointer allows us to map the event to the
source code. The results from this event can be found in Fig-
ure 4, which indicates percentage increase in the overheads
of different OpenMP directives for 4, 8, 16, and 32 threads
for EPCC synch benchmarks (results from the 2 threaded
runs are not included because of its low execution time).
These benchmarks consist of several instances of parallel
region, parallel for, and reduction directives (about 20,000
each). These directives incur an overhead of 5̃% in several
instances. The other directives are used a very few num-
ber of times, and the percentage increase in overhead is less
than 5%. A few outlier cases (lock and atomic) have very
low execution time; hence the overhead may seem higher
(see Figure 4).

5.2 NAS Parallel Benchmark
Next we evaluated our approach by running experiments on
an Intel Xeon workstation with dual quad-core E5462 Xeon
processors (8 cores total) running at 2.8 GHz (1600 MHz
FSB) with 16 GB DDR2 FBDIMM RAM, running Ubuntu
8.04. We ran the NPB3.2-OMP and the NPB3.2-MZ-MPI
benchmarks in the experiments. We compiled the bench-
marks with the OpenUH compiler, enabling both OpenMP
and -O3 level compiler optimizations. For the NPB3.2-OMP
benchmarks, we collected data using 1, 2, 4, and 8 threads.
On the NPB3.2-MZ-MPI benchmarks, we varied both the
process and thread counts, respectively, as follows: 1 X 8, 2
X 4, 4 X 2, and 8 X 1, where the first number indicates the
number of processes and the second the number of threads.

Figure 4: Overhead measurements for EPCC bench-
marks.

For both benchmark sets, we used problem size Class B.
Figures 5 and 6 graphically depict the overheads from col-
lecting performance data with our collector tool for both
benchmark sets.

The results intuitively indicate that a higher number of par-
allel region calls will result in more overheads, which is not
surprising. Figure 5 shows that LU-HP incurs the highest
overheads with as much as 6% on eight threads. Table 1 also
indicates that, of the OpenMP benchmarks, LU-HP also has
the highest number of calls to a parallel region, with close to
300,000 invocations. For the MPI/OpenMP hybrid bench-
marks, SP-MZ incurred the highest overheads (16%), with
over 400,000 parallel region invocations for the 1 process X
8 thread case (see Figure 6 and Table 2). The 2 X 4 case for
SP-MZ follows with close to 8% overheads; it makes about
200,000 parallel region invocations (see Figure 6 and Ta-
ble 2). The overhead measurments for the majority of the
other benchmarks in the experiments are less than 5% (see
Figures 5 and 6). A few outlier cases, where we observed
overhead values of less than 1%, are listed as zero overhead
in Figures 5 and 6. The standard deviation values across
multiple runs across all benchmarks are less than 2 secs.

To understand in more detail where the overheads were com-
ing from, we ran additional experiments for the two bench-
marks exhibiting the highest overheads. We ran LU-HP and
SP-MZ disabling and enabling the performance data collec-
tion. As a result, we were able to measure the costs asso-
ciated with communications between the OpenMP runtime
and the collector utility and overheads associated with per-
formance measurement/storage. We ran SP-MZ for the 4
threads X 1 process case and LU-HP on 4 threads. For
LU-HP, the results indicate that 81.22% of the overheads
can be attributed to performance measurement/storage. In
the case of SP-MZ, 99.35% of the overheads came from per-
formance measurement/storage. For both benchmarks, the
overheads from issuing callbacks and communications be-
tween the OpenMP runtime and the collector were signifi-
cantly less than overheads caused by performance measure-
ment. The results suggest that efforts for reducing overheads
should focus on optimizing the measurement/storage phases
of performance tool development.

6. CONCLUSIONS

Figure 5: Overhead measurements for NPB3.2-
OMP benchmarks.

Figure 6: Overhead measurements for NPB3.2-MZ-
MPI benchmarks.

Table 1: Number of parallel regions for the NPB3.2-
OMP benchmarks.

Benchmark # parallel regions # region calls

BT 11 1014
EP 3 3
SP 14 3618
MG 10 1281
FT 9 112
CG 15 2212
LU-HP 16 298959
LU 9 518

Table 2: Number of parallel region calls for the
NPB3.2-MZ-MPI benchmarks (Process X Thread).

Benchmark 1 X 8 2 X 4 4 X 2 8 X 1

BT 167616 83808 41904 20952
LU 40353 20177 10089 5045
SP 436672 218336 109168 54584

In this paper, we have described the “OpenMP Runtime
API for Profiling” (ORA) and our experiences implementing
it for an open-source portable OpenMP compiler. Further-
more, we have implemented tool support for reconstructing
the user-level execution behavior of OpenMP. Both of these
developments are important facilitators for the design and

implementation of OpenMP performance tools. From our
experiments, we found that overheads must be carefully con-
trolled in both the OpenMP runtime and in the collection of
the measured data in order to obtain the most accurate re-
sults. We also found that using both our implementation of
ORA and added support for accessing the runtime callstack,
we were able to rapidly prototype a tool capable of gener-
ating OpenMP specific performance metrics with minimal
overheads in most cases.

This implementation of ORA currently supports OpenMP
2.5. More work will be needed to extend the interface to
handle the constructs in the recent OpenMP 3.0 standard.
Moreover, the interface provides little support for important
work-sharing constructs such as parallel loops and for relat-
ing them to their corresponding barrier events or states. In
order to control the runtime overheads, tools can reduce the
number of times data is collected, by distinguishing between
either the same parallel region or the calling context for a
parallel region. We intend to provide additional software
support and will design efficient algorithms in our tools to
properly address these issues.

7. REFERENCES
[1] Dagum, L., and Menon, R. OpenMP: An

industry-standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5, 1 (1998),
46–55.

[2] El-Ghazawi, T., Carlson, W., Sterling, T., and
Yelick, K. UPC: Distributed Shared Memory
Programming. John Wiley and Sons, May 2005.

[3] Itzkowitz, M. The sun studio performance tools.
Tech. rep., Sun Microsystems Inc., November 2005.

[4] Itzkowitz, M., Mazurov, O., Copty, N., and Lin,
Y. White paper: An OpenMP runtime API for
profiling. Tech. rep., Sun Microsystems, Inc., 2007.

[5] Jost, G., Mazurov, O., and an Mey, D. Adding
new dimensions to performance analysis through
user-defined objects. In IWOMP (June 2006).

[6] Kufrin, R. PerfSuite: An accessible, open source
performance analysis environment for Linux. In 6th
International Conference on Linux Clusters: The HPC
Revolution 2005 (April 2005).

[7] Liao, C., Hernandez, O., Chapman, B., Chen,
W., and Zheng, W. OpenUH: An optimizing,
portable OpenMP compiler. In 12th Workshop on
Compilers for Parallel Computers (January 2006).

[8] Mohr, B., Malony, A., Hoppe, H., Schlimbach,
F., Haab, G., Hoeflinger, J., and Shah, S. A
performance monitoring interface for OpenMP. In
Proceedings of the 4th European Workshop on
OpenMP (September 2002).

[9] Numrich, R. W., and Reid, J. Co-array Fortran for
parallel programming. SIGPLAN Fortran Forum 17, 2
(1998), 1–31.

[10] Pallas GmbH. Vampirtrace 2.0 Installation and
User’s Guide, November 1999.

[11] Snir, M., Otto, S., Huss-Lederman, S., Walker,
D., and Dongarra, J. MPI: The Complete
Reference. The MIT Press, Cambridge, Massachusetts,
1996.

[12] Su, H., Bonachea, D., Leko, A., Sherburne, H.,

III, M. B., and George, A. GASP! A standardized
performance analysis tool interface for global address
space programming models. Tech. Rep. LBNL-61659,
Lawrence Berkeley National Laboratory, September
2006.

[13] Wolf, F., and Mohr, B. Automatic performance
analysis of hybrid mpi/openm p applications. Journal
of Systems Architecture: the EUROMICRO Journal
49, 10-11 (2003), 421–439.

[14] Yelick, K., Semenzato, L., Pike, G., Miyamoto,
C., Liblit, B., Krishnamurthy, A., Hilfinger, P.,
Graham, S., Gay, D., Colella, P., and Aiken, A.
Titanium: A high-performance Java dialect. In ACM
1998 Workshop on Java for High-Performance
Network Computing (1998), ACM Press.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

